Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

The 1:1 adduct of hexamethylenetetramine (HMT) with racemic *trans*-1,2-cyclohexanedicarboxylic acid (CDA)

Ramaiyer Venkatraman,^a Paresh Chandra Ray^a and Frank R. Fronczek^b*

^aDepartment of Chemistry, Jackson State University, Jackson, MS 39217, USA, and ^bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA

Correspondence e-mail: ffroncz@lsu.edu

Received 29 June 2004 Accepted 30 June 2004 Online 11 August 2004

Hexamethylenetetramine and *rac-trans*-1,2-cyclohexanedicarboxylic acid crystallize in a 1:1 ratio as a neutral molecular adduct, $C_6H_{12}N_4 \cdot C_8H_{12}O_4$. Two dicarboxylic acid molecules and two tetramine molecules form a hydrogen-bonded ring, in the shape of a rhombus, which lies on a crystallographic twofold axis bisecting the two diacid molecules. The O– $H \cdot \cdot \cdot N$ hydrogen bonds have lengths 2.6808 (19) and 2.6518 (19) Å, and, in each ring, both acid molecules have the same handedness.

Comment

Hexamethylenetetramine (C₆H₁₂N₄, also known as hexamine and urotropine, and abbreviated as HMT) forms one-, twoand three-dimensional structures with dicarboxylic acids and phenols (Gaillard et al., 1996, 1998; Hostettler et al., 1999; Lough et al., 2000; Coupar, Ferguson et al., 1997; Coupar, Glidewell & Ferguson, 1997; Mak, 1965; Jordan & Mak, 1970). These self-assembled co-crystalline molecular adducts of HMT with dicarboxylic acids are usually interconnected by hydrogen bonds, with the N atoms of HMT acting as acceptors and the carboxyl H atoms as donors. Similarly, HMT with alkanedioic acids [HOOC-(CH₂)_n-COOH] forms 1:1 crystalline adducts with rich phase diagrams. Trimesic acid (benzene-1,3,5-tricarboxylic acid), with its three carboxylic acid groups, has been extensively used in the creation of highly ordered cocrystalline solids. Shan et al. (2003) used a range of bases, including HMT, with cyclohexane-1,3-cis,5-cis-tricarboxylic acid to form supramolecular motifs. In the present study, we used racemic trans-1,2-cyclohexanedicarboxylic acid, CDA, with the possibility of double deprotonation, to bind with HMT to form similar co-crystalline solids. Pale-yellow rectangular prisms of the title adduct, (I), resulted on mixing hot ethanol solutions of HMT and CDA (in 1:1 molar ratio) and evaporating the mixture at room temperature. Unlike other systems involving HMT and dicarboxylic acids, we have found only one stoichiometric co-crystal of HMT with CDA. In this report, we present the crystal structure of this adduct, (I).

The asymmetric unit of the co-crystal of CDA and HMT consists of one HMT molecule in a general position and two CDA molecules lying on a crystallographic twofold axis. The one independent COOH group on each CDA molecule forms a hydrogen bond with an N atom on the HMT molecule, and the twofold axis thus forms a hydrogen-bonded rhombus with formula $(CDA)_2(HMT)_2$ (Fig. 1). Details of the hydrogen bonds, which are essentially linear, are given in Table 2. Although the crystal is racemic, both CDA molecules in any given hydrogen-bonded rhombus have the same handedness.

There is a mismatch in number between the two strong hydrogen-bond donors on CDA and the total of six acceptors (four N atoms on HMT and two C=O groups on CDA), so formation of the hydrogen-bonded rhombus precludes any extended hydrogen-bonding network. In the absence of such a network, weaker C-H···O and C-H···N interactions involve the remaining acceptors. These are also detailed in Table 2, which shows that all C-H donors are HMT CH₂ groups. The two excess HMT N atoms each accept one C-H···N interaction, and each CDA C=O group accepts two C-H···O interactions. These weaker interactions allow the

Figure 1

The hydrogen-bonded ring of (I), showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level. Unlabelled atoms are related to labelled atoms by a horizontal twofold axis at (1 - x, 1 - y, z).

Figure 2

A stereoview of the unit cell of (I). The origin is bottom center (background), with c vertical and b nearly horizontal.

perching of two HMT molecules above and below each rhombus. This results in alternating layers of HMT and CDA molecules each $\frac{1}{4}$ translation along the polar c axis, as shown in Fig. 2.

The space group for (I) is uncommon, being reported for approximately 0.1% of the entries in the Cambridge Structural Database (Version 5.25; Allen, 2002). In their analysis of space-group frequencies, Brock & Dunitz (1994) found that twofold axes in this space group are usually occupied, with 18 of 24 structures in their sample having $Z' = \frac{1}{2}$.

Experimental

All reagents and solvents used were commercially available and used as received without further purification. An ethanol solution (15 ml) of CDA (0.172 g, 1.0 mmol) was added to a stirred solution (5 ml) of HMT (0.100 g, 1.0 mmol) and the reaction mixture stirred for 1 h. The resulting colorless solution was allowed to stand in air at room temperature for 2 d, yielding colorless crystals of (I) suitable for X-ray analysis. IR spectra for the product were obtained in the 4000-400 cm⁻¹ range from KBr pellets on a Nicolet Nexus 670 FT-IR spectrophotometer. (The –OH stretching frequency v_{OH} around 3560 cm⁻¹ is very broad compared with the sharp –OH band in the spectrum for CDA. Similarly, the sharp bands of -CN stretching and -NCN bond + ring deformation around 1440 and 1540 cm^{-1} are also found to become one broad band in the adduct.)

Crystal data

3119 independent reflections

$C_6H_{12}N_4 \cdot C_8H_{12}O_4$ $M_r = 312.37$ Orthorhombic, <i>Aba2</i> a = 11.990 (3) Å b = 11.814 (3) Å c = 22.606 (6) Å V = 3202.1 (14) Å ³ Z = 8 $D_r = 1.206 Ma m^{-3}$	Mo $K\alpha$ radiation Cell parameters from 3171 reflections $\theta = 2.5-33.1^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 102 K Rectangular prism, colorless $0.25 \times 0.25 \times 0.12 \text{ mm}$
$D_x = 1.250$ kig in Data collection	
Nonius KappaCCD diffractometer (with an Oxford Cryosystems Cryostream cooler) ω scans with κ offsets 17 655 measured reflections	2652 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 33.1^{\circ}$ $h = -18 \rightarrow 18$ $k = -18 \rightarrow 18$

 $l = -34 \rightarrow 34$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(E^2) + (0.0511P)^2]$
	$W = 1/[0](T_0) + (0.05111)$
$R[F^2 > 2\sigma(F^2)] = 0.041$	+ 0.5607P
$wR(F^2) = 0.097$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
3119 reflections	$\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$
205 parameters	$\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1

Selected interatomic distances (Å).

O1-C7	1.322 (2)	N2-C6	1.468 (2)
O2-C7	1.214 (2)	N2-C1	1.480 (2)
O3-C11	1.323 (2)	N3-C3	1.476 (2)
O4-C11	1.213 (2)	N3-C2	1.483 (2)
N1-C4	1.464 (2)	N3-C5	1.494 (2)
N1-C5	1.466 (2)	N4-C3	1.476 (2)
N1-C1	1.483 (2)	N4-C6	1.481 (2)
N2-C2	1.464 (2)	N4-C4	1.485 (2)
			. ,

Table 2		
Hydrogen-bonding geometry	(Å, '	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O1−H1O···N3	0.88 (3)	1.80 (3)	2.6808 (19)	175 (3)
O3−H3O···N4	0.93 (3)	1.72 (3)	2.6518 (19)	177 (3)
$C1-H1A\cdots O4^{i}$	0.99	2.54	3.435 (2)	150
$C1 - H1B \cdots O2^{ii}$	0.99	2.40	3.317 (2)	153
$C2-H2A\cdots O2^{ii}$	0.99	2.56	3.436 (2)	147
$C3-H3A\cdots N2^{iii}$	0.99	2.58	3.487 (2)	152
$C3-H3B\cdots N1^{iv}$	0.99	2.48	3.355 (2)	147
$C4-H4A\cdots O4^{i}$	0.99	2.48	3.388 (2)	152

Symmetry codes: (i) $x - \frac{1}{2}, \frac{1}{2} - y, z$; (ii) $\frac{1}{2} - x, y - \frac{1}{2}, z$; (iii) $\frac{1}{2} - x, \frac{1}{2} + y, z$; (iv) $\frac{1}{2} + x, \frac{1}{2} - y, z.$

The absolute structure could not be determined, and Friedel equivalents were averaged. H atoms on C atoms were treated as riding in idealized positions, with C-H distances in the range 0.95-0.99 Å, depending on atom type. The coordinates of H atoms on O atoms were refined (see Table 2). Displacement parameters for all H atoms were assigned as $U_{iso}(H) = 1.2U_{eq}$ of the attached atom.

Data collection: COLLECT (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The purchase of the diffractometer was made possible by grant No. LEQSF(1999-2000)-ESH-TR-13, administered by the Louisiana Board of Regents.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1744). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Brock, C. P. & Dunitz, J. D. (1994). Chem. Mater. 6, 1118-1127.

- Coupar, P. I., Ferguson, G., Glidewell, C. & Meehan, P. R. (1997). Acta Cryst. C53, 1978–1980.
- Coupar, P. I., Glidewell, C. & Ferguson, G. (1997). Acta Cryst. B53, 521–533. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gaillard, V. B., Chapuis, G., Dusek, M. & Petříček, V. (1998). *Acta Cryst.* A**54**, 31–43.
- Gaillard, V. B., Paciorek, W., Schenk, K. & Chapuis, G. (1996). Acta Cryst. B52, 1036–1047.
- Hostettler, M., Birkedal, H., Gaillard, M., Chapuis, G., Schwarzenbach, D. & Bonin, M. (1999). Acta Cryst. B55, 448–458.
- Jordan, T. H. & Mak, T. C. W. (1970). J. Chem. Phys. 52, 3790-3794.
- Lough, A. J., Wheatley, P. S., Ferguson, G. & Glidewell, C. (2000). *Acta Cryst.* B**56**, 261–272.
- Mak, T. C. W. (1965). J. Chem. Phys. 43, 2799-2805.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Shan, N., Bond, A. D. & Jones, W. (2003). New J. Chem. 27, 365-371.
- Sheldrick, G. (1997). SHELXL97. University of Göttingen, Germany.