Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

The 1:1 adduct of hexamethylenetetramine (HMT) with racemic trans-1,2-cyclohexanedicarboxylic acid (CDA)

Ramaiyer Venkatraman, ${ }^{\text {a }}$ Paresh Chandra Ray ${ }^{\text {a }}$ and Frank R. Fronczek ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Department of Chemistry, Jackson State University, Jackson, MS 39217, USA, and ${ }^{\mathbf{b}}$ Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
Correspondence e-mail: ffroncz@|su.edu

Received 29 June 2004
Accepted 30 June 2004
Online 11 August 2004

Hexamethylenetetramine and rac-trans-1,2-cyclohexanedicarboxylic acid crystallize in a 1:1 ratio as a neutral molecular adduct, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{4} \cdot \mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{4}$. Two dicarboxylic acid molecules and two tetramine molecules form a hydrogen-bonded ring, in the shape of a rhombus, which lies on a crystallographic twofold axis bisecting the two diacid molecules. The $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds have lengths 2.6808 (19) and 2.6518 (19) \AA, and, in each ring, both acid molecules have the same handedness.

Comment

Hexamethylenetetramine $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{4}\right.$, also known as hexamine and urotropine, and abbreviated as HMT) forms one-, twoand three-dimensional structures with dicarboxylic acids and phenols (Gaillard et al., 1996, 1998; Hostettler et al., 1999; Lough et al., 2000; Coupar, Ferguson et al., 1997; Coupar, Glidewell \& Ferguson, 1997; Mak, 1965; Jordan \& Mak, 1970). These self-assembled co-crystalline molecular adducts of HMT with dicarboxylic acids are usually interconnected by hydrogen bonds, with the N atoms of HMT acting as acceptors and the carboxyl H atoms as donors. Similarly, HMT with alkanedioic acids [$\mathrm{HOOC}-\left(\mathrm{CH}_{2}\right)_{n}-\mathrm{COOH}$] forms 1:1 crystalline adducts with rich phase diagrams. Trimesic acid (benzene-1,3,5-tricarboxylic acid), with its three carboxylic acid groups, has been extensively used in the creation of highly ordered cocrystalline solids. Shan et al. (2003) used a range of bases, including HMT, with cyclohexane-1,3-cis,5-cis-tricarboxylic acid to form supramolecular motifs. In the present study, we used racemic trans-1,2-cyclohexanedicarboxylic acid, CDA, with the possibility of double deprotonation, to bind with HMT to form similar co-crystalline solids. Pale-yellow rectangular prisms of the title adduct, (I), resulted on mixing
hot ethanol solutions of HMT and CDA (in 1:1 molar ratio) and evaporating the mixture at room temperature. Unlike other systems involving HMT and dicarboxylic acids, we have found only one stoichiometric co-crystal of HMT with CDA. In this report, we present the crystal structure of this adduct, (I).

(I)

The asymmetric unit of the co-crystal of CDA and HMT consists of one HMT molecule in a general position and two CDA molecules lying on a crystallographic twofold axis. The one independent COOH group on each CDA molecule forms a hydrogen bond with an N atom on the HMT molecule, and the twofold axis thus forms a hydrogen-bonded rhombus with formula (CDA) $)_{2}(\mathrm{HMT})_{2}$ (Fig. 1). Details of the hydrogen bonds, which are essentially linear, are given in Table 2. Although the crystal is racemic, both CDA molecules in any given hydrogen-bonded rhombus have the same handedness.

There is a mismatch in number between the two strong hydrogen-bond donors on CDA and the total of six acceptors (four N atoms on HMT and two $\mathrm{C}=\mathrm{O}$ groups on CDA), so formation of the hydrogen-bonded rhombus precludes any extended hydrogen-bonding network. In the absence of such a network, weaker $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions involve the remaining acceptors. These are also detailed in Table 2, which shows that all $\mathrm{C}-\mathrm{H}$ donors are HMT CH_{2} groups. The two excess HMT N atoms each accept one $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{N}$ interaction, and each CDA $\mathrm{C}=\mathrm{O}$ group accepts two $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions. These weaker interactions allow the

Figure 1
The hydrogen-bonded ring of (I), showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level. Unlabelled atoms are related to labelled atoms by a horizontal twofold axis at ($1-x$, $1-y, z)$.

Figure 2
A stereoview of the unit cell of (I). The origin is bottom center (background), with c vertical and b nearly horizontal.
perching of two HMT molecules above and below each rhombus. This results in alternating layers of HMT and CDA molecules each $\frac{1}{4}$ translation along the polar c axis, as shown in Fig. 2.

The space group for (I) is uncommon, being reported for approximately 0.1% of the entries in the Cambridge Structural Database (Version 5.25; Allen, 2002). In their analysis of space-group frequencies, Brock \& Dunitz (1994) found that twofold axes in this space group are usually occupied, with 18 of 24 structures in their sample having $Z^{\prime}=\frac{1}{2}$.

Experimental

All reagents and solvents used were commercially available and used as received without further purification. An ethanol solution (15 ml) of CDA ($0.172 \mathrm{~g}, 1.0 \mathrm{mmol}$) was added to a stirred solution (5 ml) of HMT ($0.100 \mathrm{~g}, 1.0 \mathrm{mmol}$) and the reaction mixture stirred for 1 h . The resulting colorless solution was allowed to stand in air at room temperature for 2 d , yielding colorless crystals of (I) suitable for X-ray analysis. IR spectra for the product were obtained in the $4000-$ $400 \mathrm{~cm}^{-1}$ range from KBr pellets on a Nicolet Nexus 670 FT-IR spectrophotometer. (The -OH stretching frequency ν_{OH} around $3560 \mathrm{~cm}^{-1}$ is very broad compared with the sharp -OH band in the spectrum for CDA. Similarly, the sharp bands of -CN stretching and -NCN bond + ring deformation around 1440 and $1540 \mathrm{~cm}^{-1}$ are also found to become one broad band in the adduct.)

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{4} \cdot \mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{4}$
$M_{r}=312.37$
Orthorhombic, $A b a 2$
$a=11.990$ (3) \AA
$b=11.814$ (3) \AA
$c=22.606$ (6) \AA
$V=3202.1(14) \AA^{3}$
$Z=8$
$D_{x}=1.296 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Nonius KappaCCD diffractometer (with an Oxford Cryosystems Cryostream cooler) ω scans with κ offsets 17655 measured reflections
3119 independent reflections

Mo $K \alpha$ radiation

Cell parameters from 3171 reflections
$\theta=2.5-33.1^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=102 \mathrm{~K}$
Rectangular prism, colorless
$0.25 \times 0.25 \times 0.12 \mathrm{~mm}$

2652 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=33.1^{\circ}$
$h=-18 \rightarrow 18$
$k=-18 \rightarrow 18$
$l=-34 \rightarrow 34$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0511 P)^{2}\right. \\
& \quad+0.5607 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.00 \\
& \Delta \rho_{\max }=0.32 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}
\end{aligned}
$$

H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected interatomic distances (\AA).

O1-C7	$1.322(2)$	$\mathrm{N} 2-\mathrm{C} 6$	$1.468(2)$
$\mathrm{O} 2-\mathrm{C} 7$	$1.214(2)$	$\mathrm{N} 2-\mathrm{C} 1$	$1.480(2)$
$\mathrm{O} 3-\mathrm{C} 11$	$1.323(2)$	$\mathrm{N} 3-\mathrm{C} 3$	$1.476(2)$
$\mathrm{O} 4-\mathrm{C} 11$	$1.213(2)$	$\mathrm{N} 3-\mathrm{C} 2$	$1.483(2)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.464(2)$	$\mathrm{N} 3-\mathrm{C} 5$	$1.494(2)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.466(2)$	$\mathrm{N} 4-\mathrm{C} 3$	$1.476(2)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.483(2)$	$\mathrm{N} 4-\mathrm{C} 6$	$1.481(2)$
N2-C2	$1.464(2)$	$\mathrm{N} 4-\mathrm{C} 4$	$1.485(2)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{O} \cdots \mathrm{N} 3$	$0.88(3)$	$1.80(3)$	$2.6808(19)$	$175(3)$
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{O} \cdots \mathrm{N} 4$	$0.93(3)$	$1.72(3)$	$2.6518(19)$	$177(3)$
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O} 4^{\mathrm{i}}$	0.99	2.54	$3.435(2)$	150
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.99	2.40	$3.317(2)$	153
$\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.99	2.56	$3.436(2)$	147
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{~N} 2^{\mathrm{iii}}$	0.99	2.58	$3.487(2)$	152
$\mathrm{C} 3-\mathrm{H} 3 B \cdots \mathrm{~N} 1^{\mathrm{iv}}$	0.99	2.48	$3.355(2)$	147
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{O} 4^{\mathrm{i}}$	0.99	2.48	$3.388(2)$	152

Symmetry codes: (i) $x-\frac{1}{2}, \frac{1}{2}-y, z$; (ii) $\frac{1}{2}-x, y-\frac{1}{2}, z$; (iii) $\frac{1}{2}-x, \frac{1}{2}+y, z$; (iv) $\frac{1}{2}+x, \frac{1}{2}-y, z$.

The absolute structure could not be determined, and Friedel equivalents were averaged. H atoms on C atoms were treated as riding in idealized positions, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.95-$ $0.99 \AA$, depending on atom type. The coordinates of H atoms on O atoms were refined (see Table 2). Displacement parameters for all H atoms were assigned as $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ of the attached atom.

Data collection: COLLECT (Nonius, 2000); cell refinement: $H K L$ SCALEPACK (Otwinowski \& Minor, 1997); data reduction: HKL DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The purchase of the diffractometer was made possible by grant No. LEQSF(1999-2000)-ESH-TR-13, administered by the Louisiana Board of Regents.

[^0]
References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Brock, C. P. \& Dunitz, J. D. (1994). Chem. Mater. 6, 1118-1127.

Coupar, P. I., Ferguson, G., Glidewell, C. \& Meehan, P. R. (1997). Acta Cryst. C53, 1978-1980.
Coupar, P. I., Glidewell, C. \& Ferguson, G. (1997). Acta Cryst. B53, 521-533. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Gaillard, V. B., Chapuis, G., Dusek, M. \& Petříček, V. (1998). Acta Cryst. A54, 31-43.
Gaillard, V. B., Paciorek, W., Schenk, K. \& Chapuis, G. (1996). Acta Cryst. B52, 1036-1047.
Hostettler, M., Birkedal, H., Gaillard, M., Chapuis, G., Schwarzenbach, D. \& Bonin, M. (1999). Acta Cryst. B55, 448-458.

Jordan, T. H. \& Mak, T. C. W. (1970). J. Chem. Phys. 52, 3790-3794.
Lough, A. J., Wheatley, P. S., Ferguson, G. \& Glidewell, C. (2000). Acta Cryst. B56, 261-272.
Mak, T. C. W. (1965). J. Chem. Phys. 43, 2799-2805.
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Shan, N., Bond, A. D. \& Jones, W. (2003). New J. Chem. 27, 365-371.
Sheldrick, G. (1997). SHELXL97. University of Göttingen, Germany.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1744). Services for accessing these data are described at the back of the journal.

